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ABSTRACT 
This paper presents the new developments of the next 
generation of the digital human Santos. The new features 
include (1) a 211-degree-of-freedom realistic skeletal 
model with deformable skin; (2) advances in a new 
method for dynamic motion prediction, called predictive 
dynamics; (3) advances in strength and fatigue modeling; 
and (4) advances in virtual human clothing interaction 
simulation. With these new developments, Santos can 
simulate posture and motion with higher accuracy, predict 
realistic cloth interaction, consider strength and fatigue 
factors in predictive dynamics, and facilitate improved 
and more efficient product design. In addition to 
providing new developments with various aspects of 
human modeling, this paper also highlights two high-level 
approaches to human modeling.  First, predictive human 
modeling is addressed on the joint level, as opposed to the 
muscle level. This is especially novel with respect to 
strength and fatigue. Secondly, all aspects of human 
modeling either affect or are affected by motion 
prediction; predicting motion on the joint level is the core 
of the comprehensive human model. Ultimately, Santos 
can be deployed in different fields to serve various 
customers.  
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1. Introduction 
 
Digital human modeling is becoming increasingly 
important to today’s designers and manufacturers. 
Determining human performance in terms of a workplace 
or a product before it exists ensures consistence with 
health and safety standards, accelerates time-to-market, 
increases productivity, and reduces design timeframe and 
associated costs.  
 
Commercial human models available in the market are 
Jack®, Ramsis®, and Safework®. Jack enables users to 
position biomechanically accurate digital humans of 
various sizes in virtual environments, assign them tasks, 
and analyze their performance. Ramsis specifically targets 
the automobile industries. The core capabilities of this 

software are the realistic display of international 
anthropometric data and the efficient analysis of 
ergonomic questions concerning sight, maximum force, 
reachability, and comfort. Safework structures multiple 
human modeling systems to facilitate detailed 
investigation into human-centered design issues. Other 
research and development digital human models include 
SAMMIE developed by Porter et al. (1999), the Boeing 
Human Modeling System (Rice, 2004), and Dhaiba 
(Mochimaru et al., 2006). However, all of these human 
models are based on experimental data.  
 
To overcome the deficiencies of the current models, we 
are developing a new generation of digital human, Santos. 
This model is based on optimization techniques instead of 
prerecorded data. Consequently, it provides a tool for 
studying how and why humans move as they do. However, 
the human-body system is truly multi-scale, and any 
effort to model humans and their limitations must be 
multi-disciplinary. Consequently, Santos involves a 
variety of research and development projects. These 
include (1) skeletal modeling; (2) predictive dynamics; (3) 
clothing modeling; (4) strength and fatigue modeling; (5) 
physiology modeling; (6) an advanced hand modeling 
package; (7) posture prediction with multi end-effectors 
and real-time inverse kinematics (IK); and (8) muscle 
wrapping and muscle-force determination. In our previous 
reports (Abdel-Malek et al., 2006a; Abdel-Malek et al., 
2006b; Kim et al., 2006; Man et al., 2006 Marler, 2005; 
Patrick, 2005; Yang et al., 2005; Yang et al., 2006a; Yang 
et al., 2006b) we demonstrated these capabilities. In this 
paper, we report on new developments with the skeletal 
model, strength and fatigue modeling, human-clothing 
interaction modeling, and predictive dynamics. This paper 
also discusses how the various components of human 
modeling are coupled together. One of the key elements 
of enabling this coupling is viewing predictive 
capabilities at the joint level rather than muscle level or 
spatial (Cartesian points) level. This is especially helpful 
with modeling strength and fatigue, and relating such 
models to motion prediction. 
 
2. New Skinned Skeletal Avatar 
This section discusses the newly developed skinned 
skeletal avatar. It consists of skeleton and skin. 
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2.1 Skeleton 
A potential restriction with any whole-body human model 
is the fidelity of the underlying musculoskeletal system.  
Consequently, a new system has been developed for 
Santos that mimics an actual human skeleton, providing 
the highest possible fidelity with respect to the number of 
degrees of freedom.  The original kinematic skeleton used 
to predict gross human posture and motion in 2003 was 
dictated by the preliminary mathematical predictive 
models that had already been developed. The 
requirements of the predictive models at that time 
specified a total of 15 degrees of freedom (DOFs). While 
not biomechanically accurate, this kinematic skeleton led 
to important advancements in the predictive mathematical 
models for gross human posture and motion. Over time, 
additional DOFs were added to incorporate the left arm, 
neck, and legs, as well as to address visually unsatisfying 
postures and motion during extreme reaches resulting in a 
kinematic skeleton with 109 DOFs. While still not 
biomechanically correct, this kinematic skeleton has been 
used to produce highly realistic gross human motion and 
posture for the past two years. 
 
Recent efforts at VSR required a more biomechanically 
accurate approach. Specific areas of interest include a 
more realistic representation of wrist pronation and 
supination; a shoulder model that addresses coupling of 
the clavicle, scapula, and humerus; and joints in the 
kinematic spine that coincide with significant anatomical 
landmarks. While it is obvious why a significant increase 
in kinematic skeleton complexity would require changes 
in the predictive models, an understanding of how a 
polygonal mesh (or skin) for any given avatar is prepared 
is required to better understand the cost of this process 
 
The process of assigning groups of vertices of a polygonal 
mesh to a hierarchical joint structure so that the polygonal 
mesh behaves as if it had the material properties of human 
skin is well defined and is commonly referred to as 
“skinning” or “rigging” in the world of 3D computer 
animation.  It begins with ensuring that the topology of 
the polygonal mesh (or skin) is optimized for human-like 
movement by arranging the polygons in a way that 
reflects how the underlying musculature expands and 
contracts around each of the joints. Once the skin has 
been optimized, a hierarchical joint structure (kinematic 
skeleton) representing all the joints must be developed 
and is shown in Fig. 1. 
 
2.2 Skin 
After the kinematic skeleton has been built, all the 
vertices in the polygonal mesh must be bound to the 
appropriate joints in the kinematic skeleton.  This requires 
several weeks of dedicated time by a highly skilled 3D 
artist so it is important to avoid rigging until it is certain 
that the kinematic skeleton is correct (Fig. 2). However, 
the bones of a 3D skeleton do not bend or stretch which 

minimizes the rigging requirements to simply grouping 
entire bones to the appropriate nodes of the kinematic 
skeleton. This provided valuable visual feedback as the 
new kinematic skeleton was developed and tested without 
the expense of rigging avatars. Upon completion of the 
new kinematic skeleton, it was clear that the 3D skeleton 
model would provide a useful aid in ensuring that the 
locations of the kinematic joints for each avatar were 
anatomically correct as shown in Fig. 3. 
 

 
Fig. 1 Kinematic skeleton 

 
The benefits of the new kinematic skeleton are; (1) the 
locations of the joints are based on bony landmarks of a 
3D human skeleton derived from CT scan data; (2) every 
skeletal articulation is now accounted for, allowing for 
maximum extensibility in future research; and (3) this 
biomechanically correct skeleton now allows the 
mathematical models for predicting posture and motion to 
include deeper biomechanical factors, such as individual 
muscle forces and fatigue. It should be noted here that 
while this 3D skeletal model is not accurate enough to 
identify bone rugosity, it is accurate enough to identify 
significant anatomical landmarks. 
 

  
(a)                                (b) 

Fig. 2 Skin rigging: (a) Automatic rigging; (b) manual 
rigging 

 
Anatomy experts were consulted to visually confirm that 
the location of the 3D skeleton within the mesh was 
reasonable before rigging, which is shown in Fig. 4. 
 
Given this foundation for the human model, the next step 
is to model how the human moves.  This is done using a 
new approach to dynamic motion prediction, called 
predictive dynamics. 
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Fig. 3 A 3D model of a human skeleton used to identify 
anatomically correct locations for the kinematic joints 

 
Fig. 4 New skinned kinematic model 

 
3. Advances in Predictive Dynamics 
Predictive dynamics (Kim et al., 2005; Kim et al., 2006) 
is a novel approach for predicting and simulating human 
motion. This optimization-based approach avoids solving 
typical differential algebraic equations (or ordinary 
differential equations) in order to create the resulting 
simulations for highly redundant systems. Detailed and 
anatomically correct joint-based full-body human models 
with high degrees of freedom can thus be used to create 
more realistic simulation of tasks with relatively less 
computation. Various tasks like walking (Xiang et al., 
2007) and running (Chung et al., 2007) have been 
simulated using this approach. In this paper, we present 
the general formulation and examples such as stair 
climbing, throwing, and box lifting.   
 
3.1 Optimization formulation 
The problem statement for each of the dynamic tasks 
presented in this paper can be stated as follows: “Given 
task-based parameters, human anthropometry, segment 
inertial properties, physical joint motion and actuation 
limits, and desired time for completion, generate visually 
appealing and dynamically consistent task simulations 
that minimize dynamic effort.” Such a problem statement 
lends itself to an optimization formulation, various 
components (design variables, performance measure, and 
constraints) of which are discussed below. 
 
Design Variables 
Joint angle profiles, ( )iq t , are approximated as linear 

combinations of cubic B-spline basis functions. Thus, the 
control points representing the B-splines are the design 
variables for the optimization problem. Corresponding 
joint angle, velocity, and acceleration values are 
calculated at each iteration, from these control point 
values.  

 
Performance Measure 
The goal of the optimization process is to reduce the 
dynamic effort at each joint. The performance measure 
(or objective function) is, therefore, to minimize the sum 
of the torque square for all joints over the simulation time 
as follows: 

                

2

10

( ) ( )
T ndof

i
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f dt
==

= τ∑∫q q  

where ndof is the total number of joints of the human 

model, τi is the actuator torque of the ith joint, and T is the 

total simulation time. Joint actuation torques are 

calculated using a recursive Euler-Largrangian 

formulation as a function of joint angles, velocities, and 

accelerations. 
 
Constraints 
Several physics-based and task-based constraints have 
been employed to predict the motions for various tasks. 
The physics-based constraints that are common for all 
tasks are joint angle limits, torque limits, no ground 
penetration, dynamic stability, and self-avoidance that 
ensures that different segments of the digital human do 
not penetrate each other (Xiang et al., 2007).  
 
3.2 Tasks 
i. Stair climbing 
Prediction and subsequent simulation of the stair-climbing 
task requires specification of additional parameters like 
step length and step height. Additional (task-based) 
constraints imposed on the optimization problem are 
described below: 
• Symmetry Conditions: One of the assumptions in 
predicting stairs climbing motion is symmetric and cyclic 
motion. Hence, to avoid any discontinuities of the joint 
angle profile for continuous motion, the initial and final 
postures of a step being simulated should satisfy the 
symmetry condition. 
• Foot Strike Position: Foot strike position is also a 
function of step length and step height. The distance 
between the foot strike position on the staircase and the 
contacting points on the foot should be zero at contact. 
• Soft Impact: The impact created when the foot lands on 
the ground must be minimized in order to reduce the loss 
of energy. This constraint has been imposed as zero 
velocity of contacting points.  
 
Fig. 5 shows sequential snapshots of Santos climbing 
stairs. The motion appears visually realistic. However, in 
absence of any collision detection strategy, Santos’ leg 
penetrates the stairs as seen in the first and last snapshots 
in the second row. 



 

Fig. 5 Sequential snapshots of Santos walking up a 
staircase 

ii. Throwing 
Additional task-based parameters like mass of the object 
to be thrown and target location must be specified to 
simulate the highly redundant throwing problem. Some of 
the task-based constraints, as discussed below, are used to 
reduce the redundancy of the problem. 
• Initial posture: The initial posture of the digital human 
is given by the user. Depending on the task requirement, 
all or some of the joint variables can be assigned. We also 
assume that the motion starts from a static pose.
• Feet positions and orientations: The global coordinates 
and the angles about the global Z axis for both feet are 
assigned by the user. The foot point coordinates are 
constrained accordingly.  
• Parabolic projectile equation: For the object to hit the 
target point, the release position, release velocity, and 
flight time must satisfy the projectile equation
• Hand release orientation: At the release point, the 
direction of the palm should be the same as the direction 
of the release velocity.  
• Overhand throw: As part of the overhand requiremen
the global y component of the right hand velocity should 
be always positive.   
• Visual perception: This constraint requires that the 
target point should exist within the visual field of the 
human. The hand position at the release point should
be located within reasonable visual range so that the 
human can use the perception to control the release 
movement.  
  
Fig. 6 shows sequential snapshots of Santos throwing an 
object. Visually, the motion appears close to the baseball 
pitching motion. The resulting simulation shows that 
Santos tries to generate torques with the help of the full 
upper body to create the force necessary for throwing.

Fig. 6 Snapshots of Santos throwing an object
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Sequential snapshots of Santos walking up a 

based parameters like mass of the object 
and target location must be specified to 

simulate the highly redundant throwing problem. Some of 
based constraints, as discussed below, are used to 

: The initial posture of the digital human 
given by the user. Depending on the task requirement, 
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assume that the motion starts from a static pose. 

: The global coordinates 
and the angles about the global Z axis for both feet are 
assigned by the user. The foot point coordinates are 
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lease velocity, and 

flight time must satisfy the projectile equation. 
: At the release point, the 

direction of the palm should be the same as the direction 

: As part of the overhand requirement, 
component of the right hand velocity should 

: This constraint requires that the 
target point should exist within the visual field of the 
human. The hand position at the release point should also 

ated within reasonable visual range so that the 
human can use the perception to control the release 
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object. Visually, the motion appears close to the baseball 

ng simulation shows that 
Santos tries to generate torques with the help of the full 
upper body to create the force necessary for throwing. 

 
Snapshots of Santos throwing an object 

iii. Box lifting formulations 
Simulation of the box-lifting task requires
specification of initial and final box locations as well as 
the weight of the box to be lifted. Several task
constraints as described below are implemented in this 
work to satisfy boundary conditions throughout the lifting 
process (See Fig. 7(a)): 
• Hand orientation: Two hands are normal to the box to 
facilitate the grasping postures for hands.
• Vision: The vision constraint aligns the vision vector 
towards the box center. 
• Collision avoidance: The collision
is used to keep the box from penetrating the body.
 

(a) 
Fig. 7 Box-lifting task (a) Hand orientation, vision, and 

collision-avoidance constraints (b) Input parameters
 
The lifting task is to lift the box from the initial location 
to the final location. The initial 
the ground and d1 away from the feet; the final location is 
h2 high from ground and d2 away from the feet, as 
depicted in Fig. 7(b). The location parameters and box 
weight (w) are input parameters for the task.  
 

(a) 

(b) 
Fig. 8 Sequential snapshots of Santos
from a lower shelf to a higher shelf 
limits on the spine, and (b) with torque limit on the spine 
(time progression from left to right)
 
Fig. 8 shows the results of a box
lifting a 10-lb box from a lower shelf to a higher shelf. 
The sequential snapshots in Fig. 
the dynamic effort is contributed by the spine. However, 
when torque limits are applied to the whole body, the 

lifting task requires the 
specification of initial and final box locations as well as 
the weight of the box to be lifted. Several task-based 
constraints as described below are implemented in this 
work to satisfy boundary conditions throughout the lifting 

hands are normal to the box to 
facilitate the grasping postures for hands. 

: The vision constraint aligns the vision vector 

: The collision-avoidance constraint 
ox from penetrating the body. 

 
(b) 

(a) Hand orientation, vision, and 
avoidance constraints (b) Input parameters 

The lifting task is to lift the box from the initial location 
to the final location. The initial location is h1 high from 

away from the feet; the final location is 
away from the feet, as 

. The location parameters and box 
weight (w) are input parameters for the task.   

 

 

Sequential snapshots of Santos moving a 10-lb box 
from a lower shelf to a higher shelf (a) without any torque 
limits on the spine, and (b) with torque limit on the spine 
(time progression from left to right) 

box-lifting prediction for 
from a lower shelf to a higher shelf. 

 8(a) show that much of 
the dynamic effort is contributed by the spine. However, 
when torque limits are applied to the whole body, the 



 

resulting simulation in Fig. 8(b) shows contributions from 
knee and hip torque rather than spine torque to lift the box.
 
3.3 Integration with Other Components of Human 
Modeling 
Motion prediction is the keystone of the Santos human 
model; other components either affect motion or draw on 
the output from motion prediction, as shown in 
When metabolic energy is used as a performance measure 
with predictive dynamics, then various physiological 
indices (heart rate, oxygen consumption, body 
temperature, etc.) can be determined (Mathai, 2005).  
Joint torque, joint angles, and body position fr
predictive dynamics can be used to conduct ergonomic 
analysis.  Actuation joint torques from predictive 
dynamics can be used to determine muscle force 
2005), which can then be used to calculate muscle stress 
and displacement (Zhou and Lu, 2005).   
 
The following two sections will describe in detail how 
clothing affects motion, and how strength and fatigue 
models can be linked to motion.  Ultimately, we are able 
to indicate not just when Santos can or cannot complete a 
task, but how Santos alters his performance based on 
strength and fatigue, or various clothing designs.

 

Fig. 9 Multiple components of human modeling
 
4. Muscle Strength and Fatigue 

 
Muscle modeling includes muscle strength and muscle 
fatigue. In this section we present the advances in muscle 
modeling. 
 
4.1 Muscle/ Joint Strength 
In vivo muscle force is a highly nonlinear phenomenon 
that is dependent on factors such as muscle length, 
contraction velocity, and past contractile history (e.g.,
fatigue). While muscle force has been modeled as a linear 
system, linear representations are not as accurate as more 
complex nonlinear models (Frey Law and Shields, 2006). 
Force decays nonlinearly with increasing velocity (Hill, 
1938). Active muscle force varies with musc
to varying overlap of the force-producing filaments (i.e., 
actin and myosin), and stretching of structural proteins at 
long muscle lengths. It is not a simple transforma
apply these principles from the single muscle level to the 
joint level due to multiple synergistic muscles acting at a 
joint and the varying muscle moment arms with joint 
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Multiple components of human modeling 

modeling includes muscle strength and muscle 
we present the advances in muscle 

In vivo muscle force is a highly nonlinear phenomenon 
that is dependent on factors such as muscle length, 
contraction velocity, and past contractile history (e.g., 

muscle force has been modeled as a linear 
linear representations are not as accurate as more 

complex nonlinear models (Frey Law and Shields, 2006). 
Force decays nonlinearly with increasing velocity (Hill, 

muscle length, due 
producing filaments (i.e., 

tural proteins at 
t is not a simple transformation to 

apply these principles from the single muscle level to the 
muscles acting at a 

and the varying muscle moment arms with joint 

angle. Our approach to modeling 
includes each of these nonlinearities.
 
We are experimentally measuring
several angles through the normal range of motion and at 
several angular velocities (e.g., 0 
body joints. These data are used to create 
with peak torque (strength) as a function of 
and angular velocity (Laake, 2007)
authors have reported similar 3D representations of joint 
strength (Anderson et al., 2007), no one has developed a 
normative database to use for digital human modeling. 
This database will allow us to represent human strength 
capability as percentiles, similar to how anthropometry is 
represented, e.g., 5th, 25th, 50th, 75
human strength capability for men and women. Note that 
these population %iles are unrelated to anthropometric 
(height) percentiles, as tall individuals can be
weak or, conversely, short individuals
 
a. Incorporating Strength into Santos
Santos predicts the required joint torques (versus time)
along with joint angle and velocity
a given dynamic task. If we plot the predicted joint torque 
versus joint angle and angular velocity at each point in 
time, we can assess the magnitud
torque relative to a population 
capability (i.e., 50th %ile male normative 3D surface)
This provides a model of percent effort, where t
the predicted task lies to the maximum surface, the more 
difficult a task becomes. This provides a unique 
methodology for a digital human to predict 
level of difficulty of a subtask, incorporating known 
muscle force determinants such as muscle length, moment 
arm, and shortening velocity into one simple process.
demonstrate this process, walking with and without a 40
lb backpack was modeled, with the resulting knee joint 
position, velocity, and torque predictions shown in 
a-c. Fig. 10d plots this data relative to the 5
male strength surface (knee flexion)
walking with a 40-lb backpack becomes nearly max
intensity for the weakest 5% of males. Although not 
shown, this task is only moderately challenging for the 
50th-%ile strength male population
backpack.  
 
4.3 Muscle/ Joint Fatigue 
As muscles fatigue, both maximum torque and velocity 
are impacted, e.g., it becomes increasingly more difficult 
to generate large joint torques and high movement 
velocities. Thus, we can use the 3D joint
to represent fatigue by decaying them with repetitive or 
higher intensity activities. We have developed a model 
which predicts how a joint surface will decay over time, 
using a series of differential equations 
compartment and control theories
2008). A single three-compartment model 
muscles involved at a joint in one of 3 states

Our approach to modeling joint strength inherently 
includes each of these nonlinearities. 

are experimentally measuring joint peak torque at 
through the normal range of motion and at 

e.g., 0 - 300°/sec) for 6 major 
used to create 3D surfaces, 

strength) as a function of joint position 
(Laake, 2007). While previous 

3D representations of joint 
strength (Anderson et al., 2007), no one has developed a 
normative database to use for digital human modeling. 

allow us to represent human strength 
apability as percentiles, similar to how anthropometry is 

, 75th, and 90th %iles of 
human strength capability for men and women. Note that 

iles are unrelated to anthropometric 
individuals can be relatively 

individuals relatively strong. 

Incorporating Strength into Santos 
Santos predicts the required joint torques (versus time), 
along with joint angle and velocity needed to accomplish 

the predicted joint torque 
velocity at each point in 

we can assess the magnitude of the predicted joint 
population percentile’s maximum 

%ile male normative 3D surface). 
This provides a model of percent effort, where the closer 
the predicted task lies to the maximum surface, the more 

. This provides a unique 
methodology for a digital human to predict the perceived 
level of difficulty of a subtask, incorporating known 
muscle force determinants such as muscle length, moment 
arm, and shortening velocity into one simple process. To 
demonstrate this process, walking with and without a 40-

eled, with the resulting knee joint 
predictions shown in Fig. 10 

data relative to the 5th-percentile 
(knee flexion), showing that 

lb backpack becomes nearly maximal 
intensity for the weakest 5% of males. Although not 
shown, this task is only moderately challenging for the 

ile strength male population, and easy without the 

As muscles fatigue, both maximum torque and velocity 
are impacted, e.g., it becomes increasingly more difficult 
to generate large joint torques and high movement 

Thus, we can use the 3D joint strength surfaces 
by decaying them with repetitive or 

We have developed a model 
which predicts how a joint surface will decay over time, 

a series of differential equations based on 
compartment and control theories (Xia and Frey Law, 

compartment model represents 
muscles involved at a joint in one of 3 states: active, 
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resting, or fatigued. Rate constants define the behavior of 
the transfer between the active and fatigued compartments; 
however, we use a proportional controller to define the 
transfer between resting and active states. The model 
determines how much of the resting muscle pool must be 
activated in order to match the predicted joint torques. 
The combined size of the resting and active pools 
determines the residual capacity of the system for use as a 
decay coefficient (values between 0 and 1) to decay the 
3D strength surface. This can be used both as a feedback, 
post-processing mechanism, providing a means to 
measure “time to fatigue” when the task is no longer 
feasible without alterations in the predicted dynamics; 
and/or a feed-forward mechanism where the predicted 
dynamics can change as the available strength decreases. 
Most notably, we incorporate strength nonlinearities into 
or fatigue model by normalizing predicted dynamic joint 
torques by the corresponding peak 3D strength 
representation (% of maximum torque). Thus, the model 
targets this % max torque rather than a specific absolute 
muscle force or torque, as typically used by other models.  

 
Fig. 10 Predicted gait dynamics: A) knee angle, B) 

velocity, and C) peak torque per stride length with and 
without a 40-lb backpack.  D) The 40-lb gait data vs. the 

male 5th %ile strength surface for knee flexion. 
 
5. Human-Clothing Interaction Modeling 
 
In the present framework, the clothing is modeled as 
flexible continuum shells draped onto an active piecewise 
rigid human body surface. The clothing model undergoes 
unilateral frictional contact with the moving human body 
model and exerts associated forces on the human body. 
These forces can then be used to calculate the energy 
necessary to move the clothing, which can be substantial 
with heavy protective suites.  Here, we describe how a 
subject-specific human body surface driven by predictive 
dynamics is approximated with piecewise rigid mesh 
segments and how the clothing is draped onto the body 
surface. Although not the focus here, constitutive 
behavior of different clothing fabrics is an important 
aspect of clothing modeling (Swan et al., 2007).  
 

The starting point for a virtual mannequin representing 
the anthropometry of a specific human subject is a laser 
body scan, which yields a polygonal mesh (Ashdown, 
2007) involving hundreds of thousands of nodes and 
polygons. Such meshes are much finer than is necessary 
for clothing modeling, and indeed usage of such fine 
meshes would be too computationally expensive in 
clothing contact modeling. Accordingly, the body-surface 
mesh can be coarsened using commercial software tools 
(Fig. 11). Once a complete and coarsened body scan mesh 
is obtained, it is decomposed into an assemblage of 
individual meshes corresponding to limb or torso 
segments. The optimal decomposition of meshes into 
segments can itself be quite involved (see, e.g., Lien, 
2006) but was done here (Fig. 11c) in an ad-hoc manner 
at the major joint locations using AutoCAD.   
 

The individual body mesh segments are subjected to rigid 
body translations and rotations in time to approximate 
evolution of the body surface as the human subject 
performs physical tasks. Geometric inconsistencies will 
develop at the joints between the rigid body mesh 
segments (Fig. 12a), and since such gaps present a 
problem in clothing modeling, they are patched in the 
current framework using auxiliary spherical and 
ellipsoidal rigid mesh segments at each of the joints 
between body mesh segments (Fig. 12b). 

 
 

 

 

 

 

 

 

 

 

 

 

 
With a controllable piecewise rigid body surface for the 
mannequin in place, clothing models can be draped onto 
the mannequin. A number of different approaches have 
been taken to get the clothing model onto the human 
body. Two in particular are trying to simulate the actual 
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Fig.11. (a) Original body scan mesh of 230,000 
polygons; (b) coarsened mesh of only1,700 polygons; 
and (c) coarsened mesh decomposed into segments.   

(c) 

Fig. 12 (a) Virtual mannequin in 
action and developing gaps at 
the joints, specifically here at 
the left shoulder and right knee; 
(b) Virtual mannequin with 
rigid spherical and ellipsoidal 
joint segments that become 
exposed when the gaps would 
otherwise form between the 
rigid body mesh segments. 
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dressing process (Man and Swan, 2007; Volino and 
Magnenat-Thalmann, 2000) and trying to pre-position 
models of clothing patterns around models of the human 
body and then bring the patterns together and stitch them 
up at their seams (Groβ et al., 2003), essentially 
constructing the garment about the mannequin. Here, we 
try a different approach that involves two steps: (1) the 
clothing is statically pre-positioned over the mannequin 
without any concern for contact or penetration between 
the body and the clothing; and (2) once the clothing 
model is in place, contact mechanics (penetration 
detection and correction) are turned on to eliminate 
clothing penetrations of the body surface.  
 
When pre-positioning the assembled clothing models 
about the body in a fixed posture, the objective is to bring 
the centroids of the clothing model edges (cuffs, 
waistline, necklines, etc.) into alignment with the 
corresponding body-segment edge centroids. This is 
achieved by using penalty forces that are significant when 
the clothing and body segment edge centroids are not 
coincident and are minimized as the clothing becomes 
properly positioned on the body. This pre-positioning 
problem is solved quasi-statically, leaving the clothing 
model properly positioned on the body in a gross sense, 
although with some significant clothing penetrations of 
the body (Fig. 13).   

 
Fig. 13 Results of the clothing pre-position step where, 
without any concern for penetrations, the edge centroids 
of the garment models are brought into alignment with the 
edge segment centroids of the corresponding body 
segments; clothing penetration of the body is especially 
evident at the shoulders and tops of arms  

 
In the second stage, explicit dynamic analysis of the 
clothing model is performed while gravity loading pulls 
downward on the clothing model, and explicit contact 
analysis as described by Man and Swan (2007) is utilized 
to remove starting penetrations and any other penetrations 
that develop. Virtually all of the initial clothing 
penetrations from the pre-positioning stage are eliminated 
in this phase of analysis (Fig. 14). From this stage, the 
mannequin can be activated based on joint-angle profiles 
from predictive dynamics, and the clothing model will 
respond accordingly via frictional contact interactions 
with the mannequin surface. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Conclusions 
This paper presents new developments for the digital 
human Santos. These new capabilities include a high-
fidelity skinned kinematic skeleton model with over two 
hundred DOFs, advances in muscle strength and fatigue 
modeling (working at the joint-space, incorporating 3D 
dynamic joint torque and the development of a new 
fatigue model), advances in cloth modeling (human and 
cloth interaction modeling), and advances in predictive 
dynamics (simulation for different tasks such as walking 
on stairs, throwing, and box lifting). In addition to these 
new developments, a variety of inter-related research 
efforts are ongoing: hand modeling, such as grasping and 
the development of hand comfort metrics; advanced 
posture prediction (whole-body posture with global 
translation and rotation DOFs) for the new skeletal model; 
development of a zone differentiation tool; predictive 
dynamics tasks such as kneeling, side walking, ladder 
climbing, and ingress/egress; further refinement of the 
polygonal topology to allow for facial expressions and 
blinking and refinement of the skin weighting to address 
any skin tearing issues we discover as we begin using the 
avatars with the new kinematic skeleton, and interface 
development. 
 
This paper illustrates the necessity for multi-disciplinary 
work when modeling humans. In addition, as shown in 
Fig. 10, various research-and-development efforts must 
all link together, providing a comprehensive human 
model.  The joint-based focus of our model helps 
facilitate this connectivity between various aspects of a 
virtual human. 
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